Improved Audio Classification Using a Novel Non-Linear Dimensionality Reduction Ensemble Approach

نویسندگان

  • Stéphane Dupont
  • Thierry Ravet
چکیده

Two important categories of machine learning methodologies have recently attracted much interest in classification research and its applications. On one side, unsupervised and semi-supervised learning allow to benefit from the availability of larger sets of training data, even if not fully annotated with class labels, and of larger sets of diverse feature representations, through novel dimensionality reduction schemes. On the other side, ensemble methods allow to benefit from more diversity in base learners though larger data and feature sets. In this paper, we propose a novel ensemble learning approach making use of recent non-linear dimensionality reduction methods. More precisely, we apply t-SNE (t-distributed Stochastic Neighbor Embedding) to a large feature set to come up with embeddings of various dimensionality. A k-NN classifier is then obtained for each embedding, leading to an ensemble whose estimates can then be combined, making use of various ensemble combination rules from the literature. The rationale of this approach resides in its potential capacity to better handle manifolds of different dimensionality in different regions of the feature space. We evaluate the approach on a transductive audio classification task, where only part of the whole data set is labeled. We confirm that dimensionality reduction by itself can improve performance (by 40% relative), and that creating an ensemble through the proposed approach further reduces classification error rate by about 10% relative.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms

Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...

متن کامل

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach

In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013